Building of Informatics, Technology and Science
Vol 7 No 1 (2025): June (2025)

Perbandingan Algoritma Naïve Bayes, Random Forest, dan SVM Untuk Analisis Sentiment Aplikasi PLN Mobile Pada Google Play Store

Sari, Cici Nurita Kumala (Unknown)
Suryono, Ryan Randy (Unknown)



Article Info

Publish Date
01 Jun 2025

Abstract

PLN Mobile is a digital innovation developed by PT PLN (Persero) to provide electricity services through mobile devices. Many users submit their complaints and reviews on the Google Play Store. This study aims to analyze user sentiment towards the PLN Mobile application using three classification methods: Naïve Bayes, Random Forest, and Support Vector Machine (SVM). A total of 19,870 reviews that have gone through the preprocessing stage were analyzed in this study. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics. The SMOTE technique was applied to address the imbalance of sentiment classes. The results showed that before the implementation of SMOTE, SVM had the best performance with an accuracy of 92%, followed by Random Forest 79%, and Naïve Bayes 62%. After the implementation of SMOTE, SVM performance increased to 95%, Random Forest to 85%, while Naïve Bayes remained at 62%. Other evaluation metrics such as recall and F1-score also showed significant improvements after the implementation of SMOTE, especially for negative and neutral sentiments. These results show that SMOTE is able to improve the accuracy and balance of model performance, as well as provide important insights into public perception of the PLN Mobile application.

Copyrights © 2025






Journal Info

Abbrev

bits

Publisher

Subject

Computer Science & IT

Description

Building of Informatics, Technology and Science (BITS) is an open access media in publishing scientific articles that contain the results of research in information technology and computers. Paper that enters this journal will be checked for plagiarism and peer-rewiew first to maintain its quality. ...