In everyday life and the business world, buying and selling activities play a central role. For companies, daily transaction data is not just a record, but an important asset that holds the potential to increase sales through analysis. The volume of sales data generated daily is enormous, making manual processing inefficient and prone to errors. The complexity of the number of products sold also makes it difficult to gain a comprehensive understanding of purchasing patterns. Dynamic changes in consumer preferences further complicate demand forecasting and may lead to inventory issues. This study aims to address these issues by analysing sales data to identify products that are frequently purchased together. This information will be utilised in designing more effective marketing strategies, such as cross-promotions or product bundling. Additionally, this data is useful for demand forecasting and optimising inventory management. The ultimate goal is to provide relevant product recommendations to customers and enhance their satisfaction. To achieve this objective, this study applies data mining techniques, specifically the Apriori Association method. Data from 15 types of items in 28 weekly transactions at TOKO BANGUNAN MAJU BERSAMA will be analysed as an initial sample to identify the most frequently purchased combinations of construction tools. The Apriori method will associate each item based on a minimum support value of 0.25 and a minimum confidence value of 0.80. The application of this method resulted in 4 rules from 3-item patterns with confidence values ranging from 0.88 to 0.89.
Copyrights © 2025