Potatoes are a major food crop with high economic value, but they are susceptible to various Diseases impacting potato leaves can significantly influence their quality and productivity. This research focuses on identifying diseases in potato leaves through the Convolutional Neural Network (CNN) approach, leveraging transfer learning with the MobileNetV2 architecture. The dataset utilized comprises 4,072 images of potato leaves. categorized into three groups: non-infected leaves (healthy ), Early Blight-infected leaves, and Late Blight-infected leaves. The dataset is processed through data augmentation and normalization to enhance data quality. The resulting model demonstrates excellent performance, achieving an accuracy of 95.31%, a precision of 95.81%, a recall of 95.31%, and an F1-Score of 95.38%. These findings indicate the approach demonstrates its ability to identify the condition of potato leaves with a low classification error rate, especially in the healthy category. However, there are challenges in classifying between Early Blight and Late Blight that require further analysis and method improvement. This study contributes to the development of efficient and accurate plant disease detection systems.
Copyrights © 2025