Jurnal Computer Science and Information Technology (CoSciTech)
Vol 6 No 2 (2025): Jurnal Computer Science and Information Technology (CoSciTech)

Penerapan Learning Vector Quantization Dalam Pengolahan Citra Digital Untuk Deteksi Penyakit Kulit

Rizki Akbar Pratama (Unknown)
Barry Ceasar Octariadi (Unknown)
Syarifah Putri Agustini Alkadri (Unknown)



Article Info

Publish Date
10 Aug 2025

Abstract

Skin, as the largest human organ, covers more than two square meters and accounts for about 15% of body mass. Consisting of three main layers of epidermis, dermis, and subcutaneous tissue, the skin serves as a physical shield and barrier against infection, injury, and UV radiation. Skin diseases such as chickenpox, monkey pox, measles and herpes are medical challenges that require quick and accurate diagnosis. This study used 520 digital images (130 per category) from Mendeley Data and online sources. The Learning Vector Quantization (LVQ) algorithm was applied for image classification based on the extracted features. Results showed an overall accuracy of 90.74%, with respective accuracies: 97% (chickenpox), 98% (monkey pox), 91% (measles), and 100% (herpes). Evaluation using confusion matrix resulted in accuracy, precision, recall, and F1-score values of 0.91, indicating strong model performance. These findings demonstrate the potential of LVQ as a digital image-based skin disease diagnosis tool.

Copyrights © 2025






Journal Info

Abbrev

coscitech

Publisher

Subject

Computer Science & IT

Description

Jurnal CoSciTech (Computer Science and Information Technology) merupakan jurnal peer-review yang diterbitkan oleh Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Univeritas Muhammadiyah Riau (UMRI) sejak April tahun 2020. Jurnal CoSciTech terdaftar pada PDII LIPI dengan Nomor ISSN ...