Jurnal CoreIT
Vol 10, No 1 (2024): June 2024

IMPROVING PERFORMANCE OF RANDOM FOREST ALGORITHM USING ABC FEATURE SELECTION FOR SOFTWARE DEFECT PREDICTION

Laila Hidayati, Zaina Fadia (Unknown)



Article Info

Publish Date
27 Aug 2024

Abstract

Defects that may arise in software during the development process can affect the quality of the software. The classification method is used to predict software defects to minimize defects. However, the dataset used in the classification process may contain less relevant or have too many features. This can be overcome by selecting features in the dataset. In this research, the Random Forest algorithm is applied for the classification process, and the Artificial Bee Colony (ABC) algorithm is used as a feature selection method. The research aims to determine the accuracy of Random Forest with ABC feature selection. From the results of research conducted on 3 Relink datasets, without feature selection, an average accuracy of 73% was obtained. After implementing ABC feature selection, the average accuracy increased to 82%.

Copyrights © 2024






Journal Info

Abbrev

coreit

Publisher

Subject

Computer Science & IT

Description

Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi published by Informatics Engineering Department – Universitas Islam Negeri Sultan Syarif Kasim Riau with Registration Number: Print ISSN 2460-738X | Online ISSN 2599-3321. This journal is published 2 (two) times a year ...