Livestock is becoming one of the important animal protein source providers, along with the fisheries sector, to meet the protein needs of the community at large. One type of livestock business that is popular is the maintenance of broiler chickens because of the potential for meat yield. Today, many breeders run a partnership pattern with large companies where breeders play the role of the main supplier and the company as the core. This step helps maintain the stability of production and income of farmers. The success of farmers in broiler chicken production can be measured by looking at the performance index (IP), if the performance is not good then coaching from the core company is needed. The large amount of data obtained from farmers makes it difficult for core companies to model the success rate of farmer production, this can make it difficult for core companies to choose farmers who need coaching. The application of data mining methods using the Naïve Bayes algorithm classification model has the potential to provide solutions to this problem. The purpose of this study was to predict how much success rate of broiler chicken production in Riau region by utilizing the Naïve Bayes Classifier algorithm. This study utilizes a production data set involving 952 broiler chicken farmers in Riau, with 3 scenarios dividing the data ratio of 90:10, 80:20, and 70:30. The results of the analysis showed that through the evaluation of the confusion matrix, it was best found in a data ratio of 90:10 with accuracy results reaching 89,58%, precision reaching 89,89%, and recall reaching 90,16%.
Copyrights © 2023