Since sperm cells have big impact for human welfare in terms of reproduction, there are many studies have been done. In this case, we are attracted to enrich the method in determining the morphological properties of them using machine learning. Most study about it is done using 2-steps action that are feature extraction which is continued by classification. In our work, we aimed to lower the complexity by using image embedding as a general-purpose feature extractor that requires no training. For feature extraction using image, it is found that RGB has better performance compared to grayscale if we want to use Support Vector Machine (SVM). Meanwhile, when a comparation is done between SVM, random forest, Multi-Layer Perceptron (MLP), Naïve Bayes, and k-Nearest Neighbour (kNN) for classification process, MLP shows the best performance among them which is around 85%. Moreover, our proposed method has low complexity indicated by the training time around one and a quarter minute s for the most accurate method, compared to hours of training time in similar methods.
Copyrights © 2024