International Journal of Electrical and Computer Engineering
Vol 15, No 6: December 2025

Enhanced ankle physiotherapy robot with electromyography - triggered ankle velocity control

Adiputra, Dimas (Unknown)
Nismara, Radithya Anjar (Unknown)
Lubis, Muhammad Rafli Ramadhan (Unknown)
Rizkianingtyas, Nur Aliffah (Unknown)
Satrio, Kensora Bintang Panji (Unknown)
Arif, Rangga Roospratama (Unknown)
Salsabila, Annisa (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

Previous ankle physiotherapy robots, called picobot rely on predefined trajectories continuous passive movement without considering patient intent, limiting the encouragement of user-intent motion. This study then integrates electromyography (EMG) signals as triggers into picobot with an ankle velocity-based control system. The upgraded robot activates movement in specific gait phases based on muscle activity, synchronizing therapy with the patient’s intent. Functionality test on 7 young male healthy subjects investigates leg muscles, such as Tibialis Anterior, Soleus, and Gastrocnemius muscles for the most significantly contribute to ankle movements. Then, the muscle is tested to trigger picobot movements. Functionality tests revealed the Tibialis muscle significantly contributes to gait phases 2, the Soleus is prominent in phases 3 and 4, and gastrocnemius is active on phase 1. The robot successfully performs plantarflexion when EMG signals exceed a 1.58 V threshold, reaching a target position of -0.11 rad at a constant velocity of -0.62 rad/s. These findings establish a foundation for future trials since patient testing has not yet been conducted. By promoting active participation, this innovation has the potential to enhance rehabilitation outcomes. Incorporating user-intent triggers may accelerate recovery and improve healthcare accessibility in Indonesia, offering a significant advancement in physiotherapy technologies.

Copyrights © 2025






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...