International Journal of Electrical and Computer Engineering
Vol 15, No 6: December 2025

Convolutional neural network-based hybrid beamforming design based on energy efficiency for mmWave M-MIMO systems

Ayad, Hanane (Unknown)
Bendimerad, Mohammed Yassine (Unknown)
Bendimerad, Fethi Tarik (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

Millimeter-wave (mmWave) massive multiple-input multiple-output (M- MIMO) technology brings significant improvements in data transmission rates for communication systems. A key to the design of mmWave M-MIMO systems is beamforming techniques, which focus signals toward specific directions but rely on expensive, energy-intensive radio frequency (RF) chains. To address this issue, hybrid beamformers (HB) have been introduced as a partial solution, and deep learning (DL) has proven effective for HB design. However, previous works utilizing machine learning (ML) networks have primarily focused on the spectral efficiency (SE) metric for constructing HB. In this paper, we present a convolutional neural network (CNN) architecture whose loss function is defined to maximize energy efficiency (EE) directly. The network jointly learns analog and digital beamformers by evaluating EE (throughput per total power, including phase shifters, switches, digital-to-analog converters (DACs), and RF chains) and selecting the configuration that yields the highest EE. The CNN takes a channel matrix as input and outputs RF and baseband beamformer matrices. Simulation results validate the effectiveness of the proposed M-MIMO EE scheme, achieving significant EE improvements by optimizing hybrid precoding and reducing RF chain usage.

Copyrights © 2025






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...