International Journal of Electrical and Computer Engineering
Vol 15, No 6: December 2025

Adaptive tilt acceleration derivative filter control based artificial pancreas for robust glucose regulation in type-I diabetes mellitus patient

Dutta, Smitta Ranjan (Unknown)
Patra, Akshaya Kumar (Unknown)
Mishra, Alok Kumar (Unknown)
Agrawal, Ramachandra (Unknown)
Subudhi, Dillip Kumar (Unknown)
Satapathy, Lalit Mohan (Unknown)
Kar, Sanjeeb Kumar (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

This study proposes an Aquila optimization–based tilt acceleration derivative filter (AO-TADF) controller for robust regulation of blood glucose (BG) levels in patients with type-I diabetes mellitus (TIDM) using an artificial pancreas (AP). The primary objective is to develop a controller that ensures normo-glycemia (70–120 mg/dl) while enhancing stability, accuracy, and robustness under physiological uncertainties and external disturbances. The AO algorithm tunes the control gains of the TADF controller to minimize the integral time absolute error (ITAE), ensuring optimal insulin infusion in real time. The AO-TADF controller introduces a filtered structure to improve the dynamic response and noise rejection capability, effectively handling the nonlinear nature of glucose-insulin dynamics. Simulation results demonstrate that the proposed approach achieves a faster settling time (230 minutes), lower peak overshoot (3.9 mg/dl), and reduced noise (1%) compared to conventional proportional integral derivative (PID), fuzzy, sliding mode (SM), linear quadratic gaussian (LQG), and H∞ controllers. The closed-loop system achieves a stable glucose level of 81 mg/dl under varying meal and exercise disturbances, validating the superior performance and robustness of the AO-TADF approach.

Copyrights © 2025






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...