International Journal of Electrical and Computer Engineering
Vol 15, No 6: December 2025

Optimizing radial basis function networks for harmful algal bloom prediction: a hybrid machine learning approach

Kamal, Nik Nor Muhammad Saifudin Nik Mohd (Unknown)
Zainuddin, Ahmad Anwar (Unknown)
Hussin, Amir ‘Aatieff Amir (Unknown)
Annas, Ammar Haziq (Unknown)
Mohammad-Noor, Normawaty (Unknown)
Razali, Roziawati Mohd (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

The deployment of artificial intelligence in environmental monitoring demands models balancing efficiency, interpretability, and computational cost. This study proposes a hybrid radial basis function network (RBFN) framework integrated with fuzzy c-means (FCM) clustering for predicting harmful algal blooms (HABs) using water quality parameters. Unlike conventional approaches, our model leverages localized activation functions to capture non-linear relationships while maintaining computational efficiency. Experimental results demonstrate that the RBFN-FCM hybrid achieved high accuracy (F1-score: 1.00) on test data and identified Chlorophyll-a as the strongest predictor (r = 0.94). However, real-world validation revealed critical limitations: the model failed to generalize datasets with incomplete features or distribution shifts, predicting zero HAB outbreaks in an unlabeled 11,701-record dataset. Comparative analysis with Random Forests confirmed the RBFN-FCM's advantages in training speed and interpretability but highlighted its sensitivity to input completeness. This work underscores the potential of RBFNs as lightweight, explainable tools for environmental forecasting while emphasizing the need for robustness against data variability. The framework offers a foundation for real-time decision support in ecological conservation, pending further refinement for field deployment.

Copyrights © 2025






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...