Jurnal Riset Informatika dan Teknologi Informasi (JRITI)
Vol 1 No 1 (2023): Agustus - November 2023

Klasifikasi Postingan Pengguna Facebook Untuk Deteksi Phising Menggunakan Naive Bayes

Muhammad Fahmi (Unknown)
Nur Fadlillah, Fikki Arsyi (Unknown)



Article Info

Publish Date
31 Aug 2023

Abstract

Phishing is a digital fraud that is commonly carried out by cybercriminals with the aim of taking user's personal information data by manipulating it. Facebook is a very popular social media platform in the world so it can be a wet place for phishing criminals. In this research, we built a Classification model to identify and prevent phishing attempts on Facebook posts. The dataset used in this study was obtained from Facebook user posts collected. Data processing is done by preprocessing the post text, including removing punctuation marks and words that are not important. The method used is Naïve Bayes to classify posts into phishing or not phishing categories. The Naïve Bayes method is used because of its ability to classify data with a good level of accuracy. This shows that the features selected in this study can be a strong indicator for detecting phishing on Facebook user posts. The results of the study show that Naïve Bayes can be an effective solution for phishing detection on Facebook user posts. In addition, the results of this research can provide valuable insight into the common characteristics of phishing posts on Facebook. With an accuracy value of 99.01%, it is hoped that this research can help increase awareness and security of Facebook users against phishing posts.

Copyrights © 2023






Journal Info

Abbrev

jriti

Publisher

Subject

Computer Science & IT

Description

Jurnal Riset Informatika dan Teknologi Informasi merupakan jurnal ilmiah yang diterbitkan oleh Jejaring Penelitian dan Pengabdian Masyarakat (JPPM) Banten. Jurnal ilmiah ini memuat hasil riset dosen, peneliti, mahasiswa dan masyarakat umum dibidang informatika dan teknologi informasi serta rumpun ...