Jurnal Riset Informatika dan Teknologi Informasi (JRITI)
Vol 2 No 3 (2025): April - Juli 2025

Segmentasi Pelanggan Berbasis RFM dengan Algoritma K-Means pada Data Transaksi Online Retail

Darma Oktavian, Vedly Vedliyan (Unknown)
Ramadhan , Ridho (Unknown)
Fadhilla, Daffa Rayhan (Unknown)



Article Info

Publish Date
25 Jul 2025

Abstract

This research focuses on customer segmentation using the RFM (Recency, Frequency, Monetary) model and the K-Means algorithm on online retail transaction data. Customer segmentation is the process of categorizing customers into different groups based on their transactional behavior patterns. The RFM model allows us to evaluate customers based on three critical dimensions: how recently a customer made their last purchase (Recency), how often a customer makes purchases (Frequency), and the total monetary value generated by the customer (Monetary). By combining RFM data and the K-Means algorithm, we can divide customers into homogeneous segments. This analysis provides deep insights into the characteristics and value of each customer segment, enabling companies to develop more targeted and effective marketing strategies. The segmentation results are expected to assist companies in enhancing customer retention, maximizing customer lifetime value,and improving the effectiveness of marketing campaigns.

Copyrights © 2025






Journal Info

Abbrev

jriti

Publisher

Subject

Computer Science & IT

Description

Jurnal Riset Informatika dan Teknologi Informasi merupakan jurnal ilmiah yang diterbitkan oleh Jejaring Penelitian dan Pengabdian Masyarakat (JPPM) Banten. Jurnal ilmiah ini memuat hasil riset dosen, peneliti, mahasiswa dan masyarakat umum dibidang informatika dan teknologi informasi serta rumpun ...