Prosiding Seminar Nasional CORISINDO
Vol. 1 (2025): Prosiding Seminar Nasional CORISINDO 2025

Penerapan Algoritma Hybrid Sampling SMOTE-TomekLink dan Random Forest untuk Klasifikasi Penyakit Diabetes

Amin, Farda Milanda (Unknown)
Dinika, Qalbi Ala (Unknown)



Article Info

Publish Date
19 Sep 2025

Abstract

Ketidakseimbangan data pada dataset sering kali menjadi kendala dalam meningkatkan akurasi klasifikasi pada data medis, termasuk penyakit diabetes. Penelitian ini bertujuan untuk mengatasi permasalahan tersebut dengan menerapkan algoritma hybrid sampling, yaitu kombinasi metode SMOTE (Synthetic Minority Over-sampling Technique) dan TomekLink, serta memanfaatkan algoritma Random Forest sebagai model klasifikasi. Dataset yang digunakan berasal dari Kaggle, berisi 768 data pasien dengan ketidakseimbangan antara kelas negatif dan positif. Metode SMOTE digunakan untuk menyeimbangkan kelas minoritas, sedangkan TomekLink membantu mengurangi data noise dari kelas mayoritas. Hasil evaluasi menunjukkan bahwa kinerja model Random Forest meningkat secara signifikan setelah diterapkan metode Smote-TomekLink, dengan akurasi mencapai 86,4%, sensitivitas 88,2%, dan spesifisitas 81%. Peningkatan ini membuktikan bahwa kombinasi teknik sampling tersebut efektif dalam menangani masalah data tidak seimbang dan meningkatkan performa klasifikasi pada diagnosis penyakit diabetes.

Copyrights © 2025






Journal Info

Abbrev

corisindo2025

Publisher

Subject

Computer Science & IT

Description

Perguruan tinggi sebagai penyedia sumber daya manusia industri harus beradaptasi untuk memenuhi kebutuhan kompetensi transformasi digital di berbagai sektor, khususnya karya ilmiah. Berbagai inovasi harus dilakukan untuk meningkatkan sumber daya manusia yang sesuai dengan kebutuhan industri 4.0. Hal ...