Prosiding Seminar Nasional CORISINDO
Vol. 1 (2025): Prosiding Seminar Nasional CORISINDO 2025

Penerapan SMOTE dan Random Forest dalam Klasifikasi Tren Harga Saham Harian: Studi Kasus Saham PT Telkom Indonesia Tbk (TLKM)

Hadi, M Fawazi (Unknown)
Hairani, Hairani (Unknown)
Wijaya, Hartono (Unknown)
Vidiasari, Herlita (Unknown)



Article Info

Publish Date
19 Sep 2025

Abstract

Salah satu masalah utama dalam sistem klasifikasi tren harga saham adalah ketidakseimbangan kelas dalam data historis saham.  Studi ini melihat bagaimana menggunakan teknik over-sampling synthetic minority (SMOTE) dan algoritma Random Forest untuk mengklasifikasikan tren harga saham harian PT Telkom Indonesia Tbk (TLKM).  Data diukur dengan lima metrik utama: volume, open, high, low, dan close. Semua ini diperoleh dari Kaggle.  Hasil uji menunjukkan bahwa kombinasi SMOTE dan Random Forest mampu meningkatkan distribusi data dan memberikan kinerja klasifikasi yang cukup baik, dengan akurasi sebesar 51% dan skor macro F1-sebesar 0.51.  Temuan ini menunjukkan bahwa, meskipun data berubah, model mengenali kedua arah tren dengan cukup andal.  Penelitian ini membangun fondasi untuk sistem yang mendukung keputusan investasi berbasis data.

Copyrights © 2025






Journal Info

Abbrev

corisindo2025

Publisher

Subject

Computer Science & IT

Description

Perguruan tinggi sebagai penyedia sumber daya manusia industri harus beradaptasi untuk memenuhi kebutuhan kompetensi transformasi digital di berbagai sektor, khususnya karya ilmiah. Berbagai inovasi harus dilakukan untuk meningkatkan sumber daya manusia yang sesuai dengan kebutuhan industri 4.0. Hal ...