Journal of Computer Science Advancements
Vol. 2 No. 6 (2024)

Optimization of Grid Computing for Big Data Processing in Biomedical Research

Sope, Devi Rahmah (Unknown)
Cale, Wolnough (Unknown)
Aini, M. Anwar (Unknown)
Yusuf, Nur Fajrin Maulana (Unknown)
Zoraida, Masli Nurcahya (Unknown)



Article Info

Publish Date
31 Dec 2024

Abstract

The rapid growth of biomedical research has generated massive volumes of data, creating significant computational challenges. Traditional high-performance computing systems struggle to efficiently process, analyze, and manage such large-scale datasets. Grid computing, with its distributed architecture, offers a promising solution by enabling scalable and cost-effective data processing. This study explores the optimization of grid computing frameworks for big data processing in biomedical research, focusing on enhancing computational efficiency, scalability, and fault tolerance. The research aimed to evaluate the performance of optimized grid computing systems in processing diverse biomedical datasets, including genomic, proteomic, and imaging data. A combination of experimental and comparative approaches was employed, integrating grid computing frameworks such as Apache Hadoop and Globus Toolkit with biomedical data pipelines. Key metrics, including processing time, resource utilization, and error rates, were analyzed to assess the system’s performance. The findings demonstrated that optimized grid computing systems reduced processing time by an average of 35% compared to traditional methods while maintaining high accuracy. Scalability tests confirmed the framework’s ability to handle datasets up to 15 times larger without significant performance degradation. Fault tolerance improved through adaptive resource allocation, minimizing workflow interruptions. The study concludes that optimized grid computing is a transformative approach for big data processing in biomedical research. Its ability to enhance computational efficiency and scalability positions it as a crucial tool for addressing the growing data demands of modern biomedical science.

Copyrights © 2024






Journal Info

Abbrev

jcsa

Publisher

Subject

Computer Science & IT

Description

Journal of Computer Science Advancements is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of science, engineering and information technology. The journal publishes state-of-art papers in fundamental theory, experiments and ...