K-Nearest Neighbour Merupakan algoritma yang sering digunakan dalam proses klasifikasi. Dalam proses perhitungannya algoritma ini menggunakan pendekatan similarity antar record atribut. Fungsi ini terbukti baik digunakan dan dapat menghasilkan klasifikasi yang cukup akurat. Kelemahan pendekatan similarity ini adalah apabila terdapat atribut dengan range nilai yang berbeda jauh maka akan menghasilkan nilai similarity yang besar. Nilai ini jelas tidak adil apabila terdapat atribut lain yang memiliki range sangat kecil. Perhitungan menggunakan fuzzy dinilai sangat cocok untuk menangani masalah ini. Dalam perhitungan fuzzy digunakan nilai terbesar yaitu 1 dengan nilai terendah adalah 0. Penelitian ini melakukan perhitungan algoritma K-Nearest Neighbour menggunakan fuzzy dan dilakukan perbandingan dengan perhitungan tanpa menggunakan fuzzifikasi data. Hasil dari penelitian ini membuktikan bahwa fuzzifikasi data untuk normalisasi atribut dapat membuat perhitungan klasifikasi k-nearest neighbor lebih akurat dan sesuai dengan sasaran.
Copyrights © 2018