Journal of Information Systems Engineering and Business Intelligence
Vol. 3 No. 2 (2017): October

Adaptive Ant Colony Optimization on Mango Classification Using K-Nearest Neighbor and Support Vector Machine

Febri Liantoni (Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Adhi Tama Surabaya)
Luky Agus Hermanto (Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Adhi Tama Surabaya)



Article Info

Publish Date
28 Oct 2017

Abstract

Abstract— Leaves recognition can use an image edge detection method. In this research, the classification of mango gadung and manalagi will be performed. In the preprocess stage edge detection method using adaptive ant colony optimization method. The use of adaptive ant colony optimization method aims to optimize the process of edge detection of a mango leaves the bone image. The application of ant colony optimization method on mango leaves classification has successfully optimized the result of edge detection of a mango leaves the bone structure. Results showed edge detection using adaptive ant colony optimization method better than Roberts and Sobel method. The result an experiment of mango leaves classification with k-nearest neighbor method get accuracy value equal to 66,25%, whereas with the method of support vector machine obtained accuracy value equal to 68,75%.Keywords— Edge Detection, Ant Colony Optimization, Classification, K-Nearest Neighbor, Support Vector Machine

Copyrights © 2017






Journal Info

Abbrev

JISEBI

Publisher

Subject

Computer Science & IT

Description

Jurnal ini menerima makalah ilmiah dengan fokus pada Rekayasa Sistem Informasi ( Information System Engineering) dan Sistem Bisnis Cerdas (Business Intelligence) Rekayasa Sistem Informasi ( Information System Engineering) adalah Pendekatan multidisiplin terhadap aktifitas yang berkaitan dengan ...