The high number of diabetes mellitus sufferers has become a global health issue, and a scientific approach is needed to produce accurate and efficient diagnoses, which can then support decision-making in providing solutions for its management. The goal of this research is to develop a machine learning model that can accurately, efficiently, and transparently diagnose diabetes mellitus for use in clinical practice. This research method involves using the Support Vector Machine (SVM) algorithm, optimized with the Grid Search technique, and evaluated interpretively using the SHapley Additive exPlanations (SHAP) method. This research uses a secondary dataset consisting of the parameters Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, Body Mass Index, DiabetesPedigree- Function, and Age. Data preprocessing was carried out by performing normalization using a standard scaler and dividing the data into training and testing sets. The results of this study show that the SVM model achieved an accuracy of 0.7532 with the optimal parameters C: 1, gamma: 0.01, and kernel: rbf. Using SHAP, the analysis shows that the parameters Glucose, Body Mass Index, and Age have a significant impact on the results of diabetes classification. The main finding of this study is that SupportVector Machine optimization with SHapley Additive exPlanations can deliver excellent performance in diabetes prediction while also enhancing model transparency. The study’s implications suggest that the results can serve as a foundation for developing a medical diagnosis system that is straightforward, accurate, and easy to understand for diabetes mellitus.
Copyrights © 2025