IAES International Journal of Robotics and Automation (IJRA)
Vol 14, No 3: December 2025

ADC-LIO: A direct LiDAR-inertial odometry method based on adaptive distortion covariance

Yang, Lixiao (Unknown)
Feng, Youbing (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

Focusing on the localization challenges for robots in dynamic navigation environments, this study proposes a direct LiDAR-inertial odometry (LIO) system named ADC-LIO, which achieves robust pose estimation and accurate map reconstruction using adaptive distortion covariance. ADC-LIO is engineered to address uncertain motion patterns in autonomous mobile robots, effectively integrating LiDAR scan undistortion within the Kalman filtering update process by embedding an iterative smoothing process and a backpropagation strategy. The ADC-LIO architecture enhances point cloud accuracy, improving the system's overall performance and robustness. In addition, an adaptive covariance processing method is developed to resolve motion-induced sensing uncertainties, which calculates different covariances according to the error characteristics of the point cloud. This method enhances the constraints of high-quality point clouds, reduces the limitations on low-quality point clouds, and utilizes information more effectively. Experiments on the publicly available NTU-VIRAL dataset validate the effectiveness of ADC-LIO, which improves pose estimation accuracy and reduces absolute position errors compared to other state-of-the-art methods, including FAST-LIO, Faster-LIO, FR-LIO, and Point-LIO. The proposed ADC-LIO is an appealing odometry method that delivers accurate, real-time, and reliable tracking and map-building results, posing a practical solution for robotic applications in structured indoor and GPS-denied outdoor environments.

Copyrights © 2025






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...