Quantum Neural Networks (QNNs) represent a novel computational paradigm that merges the principles of quantum computing with the architecture of artificial neural networks. Through the quantum phenomena of superposition, entanglement, and interference, QNNs enable parallel computation in high-dimensional Hilbert spaces, offering the potential to surpass the representational limits of classical models. This review provides a comprehensive overview of the theoretical foundations and architectures of QNNs, including Quantum Perceptrons, Variational Quantum Circuits (VQCs), Quantum Convolutional Neural Networks (QCNNs), and Quantum Recurrent Neural Networks (QRNNs). Furthermore, it discusses hybrid quantum–classical training mechanisms and key challenges such as barren plateaus, decoherence, and sampling complexity. The review also highlights recent applications of QNNs in medical diagnostics, materials science, and financial forecasting, demonstrating their potential to accelerate computation and improve predictive accuracy. Finally, future research directions are discussed in relation to computational efficiency, model interpretability, and integration with next-generation quantum hardware.
Copyrights © 2025