Variational Quantum Circuits (VQCs) have emerged as a cornerstone of hybrid quantum–classical algorithms designed to harness the computational potential of near-term quantum devices. By combining parameterized quantum gates with classical optimization, VQCs provide a flexible framework for tackling machine learning, chemistry, and optimization problems intractable for classical methods. This review comprehensively overviews VQC design principles, ansatz structures, optimization strategies, and real-world applications. Furthermore, we discuss fundamental challenges such as barren plateaus, the expressibility–trainability trade-off, and current noisy intermediate-scale quantum (NISQ) hardware limitations. Finally, we highlight emerging directions that could enable scalable, noise-resilient, and physically interpretable variational quantum models for future quantum computing applications
Copyrights © 2025