The use of Search-Based Software Engineering (SBSE) for optimizing software architecture has evolved from fully automated to interactive approaches, integrating human expertise. However, current interactive tools face limitations: they typically support only single decision-makers, confine architects to passive roles, and induce significant cognitive fatigue from repetitive evaluations. These issues disconnect them from modern, team-based software development, where collaboration and consensus are crucial. To address these shortcomings, we propose "ArchEvolve," a novel framework designed to facilitate collaborative, multi-architect decision-making. ArchEvolve employs a cooperative coevolutionary model that concurrently evolves a population of candidate architectures and distinct populations representing each architect's unique preferences. This structure guides the search towards high-quality consensus solutions that accommodate diverse, often conflicting, stakeholder viewpoints. An integrated Artificial Neural Network (ANN) serves as a preference learning module, trained on explicit team feedback to act as a surrogate evaluator. This active learning cycle substantially reduces the number of required human interactions and alleviates user fatigue. Empirical evaluation on two industrial case studies (E-Commerce System and Healthcare Management System) compared ArchEvolve to a state-of-the-art interactive baseline. Results indicate that ArchEvolve achieves statistically significant improvements in both solution quality and consensus-building. The preference learning module demonstrated over 90% accuracy in predicting team ratings and reduced human evaluations by up to 46% without compromising final solution quality. ArchEvolve provides a practical, scalable framework supporting collaborative, consensus-driven architectural design, making interactive optimization a more viable and efficient tool for real-world software engineering teams by intelligently integrating cooperative coevolutionary search with a preference learning surrogate.
Copyrights © 2025