Makara Journal of Technology
Vol. 28, No. 2

Endwall Contouring for Lowering the Thermal Load and Augmenting the Turbine Efficiency

Sunil, Arjun Kozhikkatil (Unknown)
Sunny, Tide Porathoor (Unknown)



Article Info

Publish Date
30 Aug 2024

Abstract

Endwall contouring having significance in delineating ideal endwalls competent in thermal load depletion is the focus of this study. We have successfully utilized non-axisymmetric contoured endwalls to enhance turbine performance by controlling the secondary flow characteristics in a blade passage through steady-state numerical hydrodynamics. The supreme endwall pattern could lower the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered. The selective numerical shape change using multi-objective optimization at the most prominent locations resulted in contoured endwall geometry and a considerable reduction of thermal exchange in the vane passage and thermal load in the turbines. A non-axisymmetric contoured endwall achieves the highest net heat flux reduction and elevated aerodynamic performance with lower total pressure loss coefficients than an axisymmetric convergent contoured endwall at most locations of the endwall. In the present study, the ideal mass flow rate could pinpoint the endwall passage, contoured with outstanding axial turbine competence and longevity. Endwall contouring enhances turbine performance, and augmented efficiency is achieved with optimized shapes.

Copyrights © 2024






Journal Info

Abbrev

publication:mjt

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Civil Engineering, Building, Construction & Architecture Electrical & Electronics Engineering Engineering Materials Science & Nanotechnology Mechanical Engineering

Description

MAKARA Journal of Technology is a peer-reviewed multidisciplinary journal committed to the advancement of scholarly knowledge and research findings of the several branches of Engineering and Technology. The Journal publishes new results, original articles, reviews, and research notes whose content ...