Jurnal Algoritma
Vol 22 No 2 (2025): Jurnal Algoritma

Analisis Sentimen Ulasan Aplikasi CapCut Menggunakan Model RoBERTa Dengan Fitur Ekstraksi Word2vec

Budiman, Firman Nur (Unknown)
Witanti, Wina (Unknown)
Nurul Sabrina, Puspita (Unknown)



Article Info

Publish Date
04 Nov 2025

Abstract

To improve the accuracy of sentiment classification in CapCut app reviews, this study tested a hybrid model built from a combination of RoBERTa and Word2Vec. A total of 5,000 reviews from the Google Play Store were used as a dataset, which was then processed through data cleaning, tokenization, and stopword removal stages. Next, the EDA oversampling technique was used to address the issue of class distribution imbalance. The proposed model architecture works by combining the concatenation of vector features from Word2Vec for local word meaning representation and RoBERTa for overall sentence context understanding. Model evaluation showed an accuracy of 80%, a higher result compared to the 79% accuracy obtained by the single RoBERTa baseline model. This study concludes that combining contextual and semantic feature representations effectively results in better sentiment classification performance.

Copyrights © 2025






Journal Info

Abbrev

algoritma

Publisher

Subject

Computer Science & IT

Description

Jurnal Algoritma merupakan jurnal yang digunakan untuk mempublikasikan hasil penelitian dalam bidang Teknologi Informasi (TI), Sistem Informasi (SI), dan Rekayasa Perangkat Lunak (RPL), Multimedia (MM), dan Ilmu Komputer (Computer ...