Journal of Data Science Methods and Applications
Vol. 1 No. 2 (2025)

Prediksi Pengunduran Diri Karyawan Menggunakan Metode Algoritma Random Forest

Prasetyo, Bima Restu (Unknown)
Apiliani, Lusy Pebi (Unknown)
Intan, Citra Nur (Unknown)
Jonathan, Kenny (Unknown)



Article Info

Publish Date
30 Nov 2025

Abstract

Employee attrition is a critical issue in human resource management as it directly affects a company’s productivity and operational efficiency. Therefore, a data-driven prediction system is needed to identify potential employee resignation risks at an early stage. This study aims to build an employee attrition classification model using the Random Forest algorithm, implemented in the RapidMiner software. The dataset used in this study is derived from the IBM HR Analytics Employee Attrition Dataset. The research process includes data cleaning, attribute transformation, model building, and performance evaluation using a confusion matrix and metrics such as accuracy, precision, and recall. The results show that the Random Forest model achieved an accuracy of 91.04%, a precision of 100% for the “Yes” class, and a recall of 44.37%. Furthermore, it was found that the variables JobLevel and TotalWorkingYears significantly influence attrition status. Therefore, this model can serve as a decision support tool in identifying employee attrition risks and designing more effective, data-driven retention strategies

Copyrights © 2025






Journal Info

Abbrev

JoDMApps

Publisher

Subject

Biochemistry, Genetics & Molecular Biology Computer Science & IT Engineering Library & Information Science

Description

Theoretical Foundations: Architecture, Management and Process for Data Science Artificial Intelligence Classification and Clustering Data Pre-Processing, Sampling and Reduction Deep Learning Educational Data Mining Forecasting High Performance Computing for Data Analytics Learning Classifiers ...