The nutritional status of toddlers is a fundamental factor in supporting their growth and development, particularly during the golden period of 0–5 years of age. Malnutrition in toddlers can have detrimental effects on physical growth, cognitive development, and immune function. In Indonesia, child malnutrition remains a significant public health challenge, particularly in rural areas, necessitating improved nutritional surveillance systems at primary health centers. The manual assessment of nutritional status at community health centers (Puskesmas) often poses challenges in promptly identifying toddlers with undernutrition or severe malnutrition. This study aims to develop a toddler nutritional status classification system based on the Random Forest method to assist healthcare workers in determining nutritional status quickly and accurately. This study utilized a dataset of 2,612 toddler anthropometric records collected from Tanah Pasir Community Health Center, North Aceh, between November 2024 and January 2025. The dataset was split into training (2,090 records, 80%) and testing (522 records, 20%) sets using stratified random sampling. Key variables included age (0-60 months), body weight (kg), and body height (cm). Nutritional status categories were determined based on WHO Child Growth Standards using the weight-for-age (W/A), height-for-age (H/A), and weight-for-height (W/H) indices. The Random Forest method was chosen due to its ability to construct multiple decision trees through ensemble learning, resulting in more accurate predictions and better resistance to overfitting. The model was implemented with 100 trees and evaluated using standard classification metrics. The experimental results demonstrated that the system achieved strong classification performance, with an accuracy of 93%, precision of 95%, recall of 98%, and an F1-score of 96%. The high recall value is particularly significant in healthcare applications, ensuring minimal false negatives in detecting malnourished toddlers. The developed system facilitates healthcare workers in efficiently and systematically monitoring toddlers' nutritional status with consistent classification standards. Therefore, this system is expected to serve as a decision-support tool to improve community nutritional status at the community health center level, enabling early intervention for at-risk children.
Copyrights © 2025