JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 9 No. 6 (2025): December 2025

A Comparative Study of Machine Learning and Deep Learning Models for Heart Disease Classification

Simanjuntak, Martina Sances (Unknown)
Robet, Robet (Unknown)
Hoki, Leony (Unknown)



Article Info

Publish Date
07 Dec 2025

Abstract

Heart disease remains one of the leading causes of mortality worldwide, necessitating accurate early detection. This study aims to compare the performance of several Machine Learning (ML) and Deep Learning (DL) algorithms in heart disease classification using the Heart Disease dataset with 918 samples. The methods tested included Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbor (KNN), and Deep Neural Network (DNN). Preprocessing included feature normalization, data splitting (80:20), and simple hyperparameter tuning for parameter-sensitive models. Evaluations were conducted using accuracy, precision, recall, F1-score, AUC, and confusion matrix analysis to identify error patterns. The results showed that SVM and DNN achieved the highest accuracies of 91.3% and 92.1%, respectively. However, DNN has higher computational costs and risks of overfitting on small datasets. These findings confirm that traditional ML models such as SVM remain highly competitive on tabular medical data.

Copyrights © 2025






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...