MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer
Vol. 25 No. 1 (2025)

Comparing K-Means, GMM and BIRCH for Student Academic Performance Data: Evaluation on Two Public Datasets

Diaz, Ricky Aurelius Nurtanto (Unknown)
Suwirmayanti, Ni Luh Gede Pivin (Unknown)
Setyaningsih, Emy (Unknown)
Sentana, I Wayan Budi (Unknown)



Article Info

Publish Date
30 Nov 2025

Abstract

Academic data contains complex patterns that require appropriate clustering approaches to support informed educational decision-making. However, comparative studies that regularly evaluate various clustering methods for student academic performance, using diverse public data sets and consistent evaluation criteria, are limited. This study aims to identify the most effective clustering algorithm for modeling student academic performance by comparing three techniques: K-Means, GMM, and BIRCH, on two publicly available datasets: the Student Performance Metrics (SPM) Dataset with 16 features and 493 instances, and the Higher Education Students Performance Evaluation (HESPE) dataset with 32 features and 145 instances. Algorithm evaluation was performed using Sum of Squared Errors (SSE), Davies–Bouldin Index (DBI), Silhouette Score, and computational time. The results show that K-Means consistently provides superior clustering quality on both datasets, outperforming the other algorithms in four evaluation criteria, while BIRCH demonstrates superiority in two metrics and achieves the shortest computational time. These findings highlight that clustering effectiveness is strongly influenced by algorithm characteristics and data structure, with K-Means being more suitable for accuracy-oriented clustering and BIRCH for time-critical applications. Overall, this study contributes to educational data mining by providing comparative evidence on algorithm performance and demonstrating how methodological choices influence the interpretation of student performance patterns. In practice, institutions can choose clustering methods that best suit their needs, such as K-Means for precise academic profiling or BIRCH for rapid, large scale analysis, to help students graduate successfully.

Copyrights © 2025






Journal Info

Abbrev

matrik

Publisher

Subject

Computer Science & IT

Description

MATRIK adalah salah satu Jurnal Ilmiah yang terdapat di Universitas Bumigora Mataram (eks STMIK Bumigora Mataram) yang dikelola dibawah Lembaga Penelitian dan Pengabadian kepada Masyarakat (LPPM). Jurnal ini bertujuan untuk memberikan wadah atau sarana publikasi bagi para dosen, peneliti dan ...