The Computer Science Study Program of Universitas Methodist Indonesia is faced with the challenge of verifying the authenticity of student theses, which is still done manually. This study applies the Minkowski Distance method to analyze the level of similarity of thesis abstracts using one hundred samples. The preprocessing stage is carried out through five systematic steps: cleansing to remove non-alphabetic characters, case folding for letter standardization, tokenizing for text splitting, filtering for stopword elimination, and stemming to obtain root words, resulting in word vectors that are analyzed. The Minkowski Distance method is implemented with three parameter variations, P = 3, P = 5, and P = 7, where the selection of parameters is based on differences in sensitivity to vector dimensions; the higher the P value, the greater the emphasis on significant differences between dimensions. The test results show that the parameter P = 7 provides the most optimal similarity measurement with the smallest distance of 3.84 for documents with the highest similarity. These findings contribute to the development of a more effective similarity detection system to maintain academic integrity.
Copyrights © 2025