IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 6: December 2025

A merchant analytics framework for revenue forecasting and financial stress detection using transaction data

Harb, Yara (Unknown)
Baaklini, Wissam (Unknown)
Abbas, Nadine (Unknown)
Kadry, Seifedine (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

By processing payments and providing specialized financial services, acquiring banks are essential for merchants’ operations. To forecast 30-day revenue trajectories, identify seasonal demand patterns, and identify early indicators of financial stress, this paper presents a scalable merchant analytics framework that benefits from transactional data. The framework captures multi-level seasonalities using Prophet time series model, allowing dynamic product offerings like revenue-based loans. Proactive risk management is supported offerings like revenue-based loans. Proactive risk management is supported. by a new stress-flagging mechanism that identifies merchants at risk based on deviations in revenue trends. The framework achieved a median 30-day mean absolute percentage error (MAPE) of 56.51% after the validation on a dataset with 130,350 transactions from 460 merchants in a volatile economic environment. The model demonstrated significant practical utility in identifying financial distress and segmenting merchant behavior, despite its moderate predictive precision, which is common challenge in high-variance merchant datasets. Model outputs are converted into decision-support visualizations along with an interactive dashboard.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...