IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 6: December 2025

Spam social media profile detection using hybrid positive unlabelled learning

Patel, Nidhi A. (Unknown)
Nanavati, Nirali (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

Online social networks (OSNs) are a communication medium of social interaction for people, where social activities, entertainment, business oriented activities, and information are exchanged. It creates an environment with worldwide connectivity where groups of individuals may discuss their interests and activities on social media platforms. Billions of people routinely interact with social content, opinion sharing, recommendations, networking, scouting, social campaigns, alerting on OSNs. The increase in popularity of OSNs creates new challenges and perspectives to the researchers of social networks, which is of interest in various fields. One of the most popular networking platforms for microblogging is X (formerly Twitter). Millions of spam accounts have inundated the X network, which could damage normal users' security and privacy. Hence, the research in this filed has become essential for enhancing real users' protection and identifying spam profiles. In this manuscript, we propose hybrid approach based on semi-supervised learning to detect the spam profiles. The proposed work is based on the positive and unlabeled (PU) learning algorithm, which learns from an unlabeled dataset and a small number of positive instances. Simulation results demonstrate that our approach outperformed existing PU learning approach by 17.39% and 17.51% improvement respectively in spam detection rate on X and Instagram datasets.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...