IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 6: December 2025

Optimizing sparse ternary compression with thresholds for communication-efficient federated learning

Murthy Chittaiah, Nithyanianjan (Unknown)
Haladappa, Manjula Sunkadakatte (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

Federated learning (FL) enables decentralized model training while preserving client data privacy, yet suffers from significant communication overhead due to frequent parameter exchanges. This study investigates how varying sparse ternary compression (STC) thresholds impact communication efficiency and model accuracy across the CIFAR-10 and MedMNIST datasets. Experiments tested thresholds ranging from 1.0 to 1.9 and batch sizes of 10, 15, and 20. Results demonstrated that selecting thresholds between 1.2 and 1.5 reduced total communication costs by approximately 10–15%, while maintaining acceptable accuracy levels. These findings suggest that careful threshold tuning can achieve substantial communication savings with minimal compromise in model performance, offering practical guidance for improving the efficiency and scalability of FL systems.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...