IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 6: December 2025

Combining convolutional operators in unsupervised networks for kidney abnormalities

Suksukont, Aekkarat (Unknown)
Prommakhot, Anuruk (Unknown)
Srinonchat, Jakkree (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

Deep learning plays a pivotal role in advancing the diagnosis of renal dysfunction, achieving performance levels comparable to those of medical experts. However, disease domain variations and model differences can impact learning quality. To address renal dysfunction, we propose dual stream convolutional (DSC) and dual-input convolutional (DIC) for unsupervised learning. The proposed network is designed to process multi scale data and employs parallel data aggregation to enhance learning capabilities, improving the reliability of the experimental results. DSC achieved training losses of 0.0069, 0.0056, 0.0042, and 0.0048 for normal, cyst, stone, and tumor datasets, respectively, while DIC achieved losses of 0.0066, 0.0063, 0.0044, and 0.0058 for the same categories. The experimental results demonstrate that our proposed models outperform state of-the-art approaches, making them well-suited for broad application in clinical research studies.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...