Mushroom poisoning remains a public health concern, often caused by misidentifying toxic species that visually resemble edible ones. This study investigates the feasibility of using a Convolutional Neural Network (CNN) to classify five mushroom species, Amanita caesarea, Amanita phalloides, Cantharellus cibarius, Omphalotus olearius, and Volvariella volvacea into toxic and non-toxic categories based on image data. A dataset of 137 images was collected and preprocessed through resizing, normalization, and data augmentation. A modified AlexNet-based CNN was trained and evaluated using accuracy, precision, recall, and F1-score. The best-performing model achieved a validation accuracy of 0.40, indicating limited discriminative capability. These findings highlight that the dataset size is insufficient for training a CNN from scratch and that the model cannot reliably distinguish species with subtle morphological differences. The study concludes that larger datasets, improved image quality, and transfer learning approaches are essential for achieving practical and deployable mushroom classification performance.
Copyrights © 2025