Infolitika Journal of Data Science
Vol. 3 No. 2 (2025): November 2025

Enhanced Thyroid Disorder Classification Through XGBoost-Based Machine Learning Techniques

Maulana, Aga (Unknown)



Article Info

Publish Date
30 Nov 2025

Abstract

Thyroid disorders are common endocrine conditions whose diagnosis often requires integrating multiple clinical and laboratory indicators. This study proposes a machine learning framework for multiclass classification of thyroid diseases using XGBoost combined with an automated preprocessing and feature-engineering pipeline. A dataset of 9,167 patient records and 30 clinical and biochemical features was processed using a structured pipeline that included imputation, encoding, scaling, and hyperparameter optimization with RandomizedSearchCV and GridSearchCV. The optimized XGBoost model achieved 95.20% test accuracy, a high weighted F1-score (0.94), and consistent cross-validated performance. Classification results showed excellent discrimination for major thyroid conditions and reliable identification of healthy individuals. Feature importance analysis revealed that TBG-related measurements, thyroxine therapy status, and key hormone indices (TSH, TT4, FTI) were the most influential predictors. Overall, the findings demonstrate that the proposed XGBoost-based framework provides accurate and robust support for multiclass thyroid disease diagnosis and can serve as a practical foundation for clinical decision-support applications.

Copyrights © 2025






Journal Info

Abbrev

ijds

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Engineering

Description

Infolitika Journal of Data Science is a distinguished international scientific journal that showcases high caliber original research articles and comprehensive review papers in the field of data science. The journals core mission is to stimulate interdisciplinary research collaboration, facilitate ...