Compiler
Vol 14, No 2 (2025)

Baseline Evaluation of Backpropagation Artificial Neural Network for Visual Image-Based Vehicle Type Classification

Harman, Rika (Unknown)
Riadi, Imam (Unknown)
Fadlil, Abdul (Unknown)



Article Info

Publish Date
30 Nov 2025

Abstract

The increasing number of vehicles in urban areas requires technology-based solutions for efficient transportation management. This study proposes a vehicle classification model using Artificial Neural Networks (ANN) with the backpropagation algorithm, based on digital image data. The model is a feedforward neural network comprising an input layer, a hidden layer with 64 sigmoid-activated neurons, and an output layer with 7 softmax-activated neurons. The dataset, sourced from Roboflow Inc., consists of 16,185 images across eight vehicle classes: Hummer, Toyota Innova, Hyundai Creta, Suzuki Swift, Audi, Mahindra Scorpio, Rolls Royce, and Tata Safari. The data is split 80:20 for training and testing. Input features include vehicle dimensions, dominant RGB color, number of axles, and license plate detection. The model is trained using gradient descent and categorical crossentropy loss. Evaluation results show 85% validation accuracy at epoch 28 and 100% test accuracy. Precision, recall, and F1-score indicate strong performance, though minor errors occur in visually similar classes. These findings demonstrate that backpropagation-based ANN is effective for vehicle classification and can be applied in systems such as automatic parking and traffic monitoring

Copyrights © 2025






Journal Info

Abbrev

compiler

Publisher

Subject

Computer Science & IT

Description

Jurnal "COMPILER" dengan ISSN Cetak : 2252-3839 dan ISSN On Line 2549-2403 adalah jurnal yang diterbitkan oleh Departement Informatika Sekolah Tinggi Teknologi Adisutjipto Yogyakarta. Jurnal ini memuat artikel yang merupakan hasil-hasil penelitian dengan bidang kajian Struktur Diskrit, Ilmu ...