ALGORITMA : JURNAL ILMU KOMPUTER DAN INFORMATIKA
Vol 9, No 2 (2025): November 2025

Studi Pengelompokan Multimetode Provinsi di Sumatera Utara Menggunakan Pendekatan PCA dan K-Means

Lubis, Fitra Hidayat (Universitas Islam Negeri Sumatera Utara)
Ashar, Suthan Farras (Universitas Islam Negeri Sumatera Utara)
M.S, OK Mhd Fahri Al-Faruqy (Universitas Islam Negeri Sumatera Utara)
Amari, Ahmad Boby (Universitas Islam Negeri Sumatera Utara)



Article Info

Publish Date
08 Dec 2025

Abstract

This study aims to classify regions in North Sumatra based on a set of social and economic indicators by applying a multi-method clustering approach. Principal Component Analysis (PCA) is employed to reduce data dimensionality and identify the most influential variables, while the K-Means algorithm is used to form clusters based on similarity of characteristics. The results indicate that the combination of PCA and K-Means can cluster provinces or regions more efficiently and interpretably. The resulting clusters reflect patterns of similarity among regions in terms of social and economic development, thus providing a basis for formulating more targeted regional development policies. These findings demonstrate that a multi-method approach can yield more comprehensive results in spatial data clustering.Keywords: Clustering, Principal Component Analysis (PCA), K-Means, multi-method, North Sumatra.

Copyrights © 2025