International Journal of Applied Sciences and Smart Technologies
Volume 07, Issue 2, December 2025

Sign Language Detection Models using Resnet-34 and Augmentation Techniques

Hilal, Rizki Ramdhan (Unknown)
Aradea, Aradea (Unknown)
Purwayoga, Vega (Unknown)



Article Info

Publish Date
01 Dec 2025

Abstract

For deaf or hard of hearing people, sign language is a primary means of communication, but low public understanding makes social engagement difficult. Researchers now use computer vision technology and Convolutional Neural Network (CNN) to detect sign language movements. Problems such as overfitting and missing gradients still exist. Using CNN and ResNet-34 architecture, as well as image augmentation to overcome this problem, this research builds a deep learning-based sign language detection model. The Indonesian Sign Language System (SIBI) dataset was used to test the model. The test results show that the model with image augmentation trained for more than 50 epochs obtained an accuracy of 99.4%, precision of 99.5%, recall of 99.5%, and an F1 score of 99.5%. The model without image augmentation produced an accuracy of 99.4%, recall of 99.3%, F1 score of 99.3%, and precision of 99.4%. ResNet-34 architecture overcomes the problem of missing gradients, while image augmentation avoids overfitting and improves model accuracy.

Copyrights © 2025






Journal Info

Abbrev

IJASST

Publisher

Subject

Computer Science & IT Energy Engineering Industrial & Manufacturing Engineering

Description

International Journal of Applied Sciences and Smart Technologies (IJASST) is published by Faculty of Science and Technology, Sanata Dharma University Yogyakarta-Central Java-Indonesia. IJASST is an open-access peer reviewed journal that mediates the dissemination of academicians, researchers, and ...