International Journal of Artificial Intelligence in Medical Issues
Vol. 3 No. 2 (2025): International Journal of Artificial Intelligence in Medical Issues

Machine Learning-Based Prediction of HIV/AIDS Infection and Treatment Effectiveness: A Clinical Dataset Analysis

Jiwa Permana, Agus Aan (Unknown)
Wikranta Arsa, I Gusti Ngurah (Unknown)
Naswin, Ahmad (Unknown)
Sumiyatun (Unknown)



Article Info

Publish Date
29 Nov 2025

Abstract

The early and accurate prediction of HIV/AIDS infection is critical to improving clinical decision-making and ensuring effective patient management. This study presents a comprehensive machine learning-based approach to predict HIV/AIDS infection status and evaluate the effectiveness of antiretroviral treatments using a well-documented clinical dataset from 1996, comprising 2,139 patient records and 34 features. Through rigorous preprocessing, exploratory data analysis, and feature engineering, several new clinically relevant attributes were constructed, such as CD4/CD8 ratios and immunological change metrics. Four machine learning models—Logistic Regression, Support Vector Machine, Random Forest, and Gradient Boosting—were trained and evaluated. Among these, the Gradient Boosting classifier achieved the highest ROC-AUC score of 0.9335, while Random Forest provided strong predictive performance with a ROC-AUC of 0.9180 and was selected for further evaluation due to its model transparency. Key features influencing infection prediction included CD4+ and CD8+ dynamics, baseline immunological levels, and treatment history. Additionally, the study examined treatment effectiveness by analyzing CD4+ cell count responses across different therapy types. The combination of ZDV and ddI emerged as the most effective regimen, improving immune outcomes and lowering infection rates, while ZDV monotherapy showed the least favorable results. This work underscores the potential of machine learning as a clinical decision support tool in HIV/AIDS care and provides data-driven insights into treatment optimization. Future studies should incorporate longitudinal patient data and real-world clinical environments for broader applicability.

Copyrights © 2025






Journal Info

Abbrev

ijaimi

Publisher

Subject

Computer Science & IT Dentistry Health Professions Medicine & Pharmacology Public Health

Description

The International Journal of Artificial Intelligence in Medical Issues (IJAIMI) is a premier, peer-reviewed academic journal dedicated to the integration and advancement of artificial intelligence (AI) in the medical field. The journal aims to serve as a global platform for researchers, clinicians, ...