Jurnal Ilmiah Kursor
Vol. 13 No. 2 (2025)

A Multi-label book genre classification: Comparison of machine learning techniques and problem transformation methods

Subroto, Eka Mira Novita (Unknown)
Faisal, Muhammad (Unknown)



Article Info

Publish Date
09 Dec 2025

Abstract

Books play an essential role in life as a source of knowledge and information. The increasing number of books published makes classification more complex, especially in a multi-label context where a book may belong to more than one genre. Furthermore, automatic classification of book genres is required due to the transition of books to e-book and audiobook formats. This research analyzes the application of machine learning techniques using Support Vector Machine (SVM), Logistic Regression (LR), and Multinomial Naive Bayes (MNB) for multi-label book genre classification by comparing their performance through stemming and unstemming process in text preprocessing with TF-IDF and K-Fold cross-validation (k = 10). In addition, two problem transformation methods, Binary Relevance (BR) and Label Powerset (LP), are evaluated. The results show that SVM combined with stemming outperforms other models across all metrics of accuracy, precision, recall, and F1-score. SVM is effective in handling complex and imbalanced data distributions, resulting in more accurate and consistent predictions. The stemming process positively contributes by reducing word variation and allowing the model to focus on word meanings. Among problem transformation methods, LP yields better results because it can capture relationships between labels more effectively than BR.

Copyrights © 2025






Journal Info

Abbrev

kursor

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal Ilmiah Kursor is published in January 2005 and has been accreditated by the Directorate General of Higher Education in 2010, 2014, 2019, and until now. Jurnal Ilmiah Kursor seeks to publish original scholarly articles related (but are not limited) to: Computer Science. Computational ...