Indonesian Journal of Artificial Intelligence and Data Mining
Vol 8, No 2 (2025): July 2025

Development of a Raspberry Pi 4-Powered Internet of Things System for Acne-Prone Skin Health Monitoring

Kurniawan, Aprila (Unknown)
Sari, Dewi Permata (Unknown)
Wijanarko, Yudi (Unknown)
Sabara, Gally (Unknown)



Article Info

Publish Date
10 Dec 2025

Abstract

This research developed an Internet of Things (IoT)-based facial skin health monitoring system, with a focus on acne-prone skin. Facial skin is categorized into three main types: normal, oily, and dry, as well as four types of acne: blackheads, papules, pustules, and nodules. The system is designed to enhance the accuracy of skin condition monitoring through facial image analysis, utilizing a dataset of 4,092 images. The high number of acne cases, especially in 12-24 year olds with 40-50 million cases in the United States, is the background of this research. Conventional skin analyzers are considered less capable of providing accurate quantitative data. Therefore, a Smart Skin Analyzer Detector was developed that uses a Raspberry Pi as a data processor. Images are taken through a webcam, analyzed, and then the results are sent to the cloud. The system is also integrated with Telegram to provide users with real-time notifications regarding their skin type and acne condition. This approach enables more effective, faster, and more affordable skin monitoring. The results demonstrate that IoT technology has significant potential in enhancing personalized and sustainable skin care.

Copyrights © 2025






Journal Info

Abbrev

IJAIDM

Publisher

Subject

Computer Science & IT

Description

Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM) is an electronic periodical publication published by Puzzle Research Data Technology (Predatech) Faculty of Science and Technology UIN Sultan Syarif Kasim Riau, Indonesia. IJAIDM provides online media to publish scientific ...