The assessment of nuclear heat utilization for natural gas steam reforming to produce hydrogen has been carried out. Most of hydrogen production in the world, is produced by steam reforming of natural gas. This process is an endothermic reaction at high temperature that needs a huge amount of heat energy to proceed the reaction. Conventionally, the heat energy needed is supplied by direct burning of fossil fuel. If the huge amount of those heat energy can be substituted by nuclear process heat, some advantages can be obtained such as, reducing combustion of fossil fuels that give implication of significant decreasing of CO2 emission to the environment. On application of nuclear process heat to steam reforming of natural gas, there are some inferior conditions related to the limitation of temperature and pressure provided by nuclear reactor which directly gives impact on lower thermal efficiency (~50%) compared to the fossil-fuelled plant (80-85%). Some modification design and operation of reformer can improve the lack condition, and capable to increase the thermal efficiency of nuclear heated natural gas steam reformer become about 78%.
Copyrights © 2008