Scientific Contributions Oil and Gas
Vol 48 No 4 (2025)

The Integration of Hybrid Capacitance Resistance Model and Machine Learning: A Data-Based Workflow for Optimizing Waterflood Performance and Reservoir Management

Syifa Alviola Muhendra (Universitas Islam Riau)
Novia Rita (Universitas Islam Riau)
Fajril Ambia (Universitas Islam Riau)
Agus Dahlia (Universitas Islam Riau)



Article Info

Publish Date
16 Dec 2025

Abstract

This study aims to minimize uncertainty in waterflood performance by employing a data-driven workflow that combines the Capacitance Resistance Model (CRM) with Machine Learning. Two CRM variants, CRM-P (Producer-based) and CRM-IP (Injector-Producer-based), are utilized to evaluate interwell connectivity and time constants on three reservoir models: homogeneous, heterogeneous, and a real field scenario (Volve Field). The model is evaluated using R² and Mean Absolute Percentage Error (MAPE) and is compared against the Random Forest and eXtreme Gradient Boosting (XGBoost) techniques. The results indicate that CRM-IP provides more realistic estimates than CRM-P, particularly for response time. XGBoost consistently demonstrates superior prediction accuracy, achieving R² values of 0.76–0.98 and MAPE values of 0.5–10%. Three-dimensional (3D) visualizations of interwell connectivity and streamline analysis strengthen the understanding of fluid flow and sweep efficiency. This further demonstrates that integrating CRM and Machine Learning serves as a decision-support tool for Enhanced Oil Recovery optimization, as evidenced by R² and MAPE analyses that characterize sweep efficiency and the reservoir's capacity to accommodate additional injection.

Copyrights © 2025






Journal Info

Abbrev

SCOG

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Energy

Description

The Scientific Contributions for Oil and Gas is the official journal of the Testing Center for Oil and Gas LEMIGAS for the dissemination of information on research activities, technology engineering development and laboratory testing in the oil and gas field. Manuscripts in English are accepted from ...