Jurnal Teknik dan Science (JTS)
Vol. 4 No. 3 (2025): Oktober: Jurnal Teknik dan Science

Penggunaan Kecerdasan Buatan untuk Menganalisis Faktor Risiko Diabetes dengan menggunakan Random Forest Classifier

Tri Sulistyorini (Universitas Gunadarma)
Nelly Sofi (Universitas Gunadarma)
Dwi Widiastuti (Universitas Gunadarma)
Viliananda Tripita Claur (Universitas Gunadarma)



Article Info

Publish Date
27 Oct 2025

Abstract

Diabetes is a non-communicable disease that deserves attention and poses a significant public health challenge. Although not a contagious disease, preventive measures and early detection of diabetes risk are crucial. This study used machine learning-based artificial intelligence to identify diabetes risk factors. The model was created using the Random Forest Classifier (RFC) algorithm, which has 16 variables as parameters. The model was built using the Python programming language, with data collection spanning from 2015 to 2018. The research included needs analysis, data collection, data preprocessing, model training, predictive model creation, system design, implementation, and testing. The final results showed that, with an accuracy of 89%, the model could be used effectively to predict diabetes risk. Furthermore, the model identified more pre-diabetes classes than other classes.

Copyrights © 2025






Journal Info

Abbrev

JTS

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Control & Systems Engineering Electrical & Electronics Engineering Industrial & Manufacturing Engineering

Description

Jurnal Ilmiah Teknik adalah jurnal yang ditujukan untuk publikasi artikel ilmiah yang diterbitkan oleh Asosiasi Dosen Muda Indonesia dan di payungi Oleh Yayasan Dosen Muda Indonesia. Jurnal ini adalah jurnal Ilmu Teknik yang bersifat peer-review dan terbuka. Bidang kajian dalam jurnal ini termasuk ...