Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol. 3 No. 4 (2025): JNATIA Vol. 3, No. 4, Agustus 2025

Klasifikasi Kematangan Tomat pada Citra Digital Menggunakan DeiT (Data-efficient Image Transformer)

I Gede Made Widi Anditya (Universitas Udayana)
Gst. Ayu Vida Mastrika Giri (Universitas Udayana)



Article Info

Publish Date
01 Aug 2025

Abstract

This study addresses the critical need for accurate and efficient tomato ripeness classification in agriculture and agribusiness, aiming to overcome the limitations of subjective manual methods. Leveraging advances in Computer Vision, this study implements a Data-efficient Image Transformer (DeiT) model for automatic classification of digital tomato images. DeiT, a Transformer-based architecture developed by Facebook AI Research, was chosen for its superior performance on small to medium-sized datasets, leveraging knowledge distillation. The model was trained using the Kaggle dataset, instrumented to enhance visual diversity, to classify tomatoes into “ripe” and “unripe” categories. Evaluation was performed using standard classification metrics including accuracy, F1-Score, and confusion matrix. The model demonstrated high performance, achieving an overall accuracy of 0.96 on the test dataset.

Copyrights © 2025






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT Engineering

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) adalah jurnal yang berfokus pada teori, praktik, dan metodologi semua aspek teknologi di bidang ilmu komputer, informatika dan teknik, serta ide-ide produktif dan inovatif terkait teknologi baru dan teknologi informasi. Jurnal ini memuat ...