Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol. 4 No. 1 (2025): JNATIA Vol. 4, No. 1, November 2025

Implementasi Algoritma Random Forest Regression dalam Sistem Prediksi Harga Rumah di Jabodetabek

I Made Gede Aryadana Baraja Putra (Universitas Udayana)
I Ketut Gede Suhartana (Universitas Udayana)



Article Info

Publish Date
01 Nov 2025

Abstract

Indonesia's rapid urbanization, particularly in the Jabodetabek region, has created a severe housing shortage with a backlog of 2.93 million units representing 30% of the national deficit. This imbalance between supply and demand necessitates accurate house price prediction systems to guide market participants. This research implements Random Forest Regression algorithm to predict house prices in the Jabodetabek region using comprehensive datasets covering land area, building area, geographical location, room quantities, facilities, and property characteristics across districts and cities. The methodology involves data preprocessing, model training using Random Forest Regression, and performance evaluation using established metrics. Results demonstrate great algorithm performance with RMSE of 0.3545, MAE of 0.2014, MAPE of 1.0184, and R² of 0.8751 confirming the model explains 87.51% of house price variance. The implementation successfully addresses the research objective of providing developers with a reliable algorithmic framework for property pricing strategies.

Copyrights © 2025






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT Engineering

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) adalah jurnal yang berfokus pada teori, praktik, dan metodologi semua aspek teknologi di bidang ilmu komputer, informatika dan teknik, serta ide-ide produktif dan inovatif terkait teknologi baru dan teknologi informasi. Jurnal ini memuat ...