Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol. 3 No. 4 (2025): JNATIA Vol. 3, No. 4, Agustus 2025

Optimasi Metode Support Vector Machine (SVM) Mengunakan Particle Swarm Optimization pada Permasalahan Klasifikasi Diabetes

Anak Agung Gde Agung Pranandita (Universitas Udayana)
I Made Widiartha (Universitas Udayana)



Article Info

Publish Date
01 Aug 2025

Abstract

Diabetes mellitus is a chronic disease that requires accurate early detection. This study presents a diabetes classification system by integrating Support Vector Machine (SVM) with Particle Swarm Optimization (PSO) to automatically optimize model parameters. The dataset used was obtained from Kaggle, consisting of 100,000 entries and nine medical attributes. Data preprocessing included cleaning, encoding, Min-Max normalization, and undersampling to balance class distribution. Model performance was evaluated using 5-Fold Cross Validation. The results showed that the SVM- PSO achieved an average accuracy of 83.60% which is higher than the conventional SVM with 83.39% accuracy. These findings demonstrate that PSO effectively enhances the classification performance of SVM and is recommended for machine learning-based medical diagnosis, especially in diabetes prediction.

Copyrights © 2025






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT Engineering

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) adalah jurnal yang berfokus pada teori, praktik, dan metodologi semua aspek teknologi di bidang ilmu komputer, informatika dan teknik, serta ide-ide produktif dan inovatif terkait teknologi baru dan teknologi informasi. Jurnal ini memuat ...