Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol. 3 No. 4 (2025): JNATIA Vol. 3, No. 4, Agustus 2025

Analisis Komparatif Arsitektur CNN dan VGG16 pada Klasifikasi Genre Musik

Komang Indra Pradnya (Universitas Udayana)
Made Agung Raharja (Universitas Udayana)



Article Info

Publish Date
01 Aug 2025

Abstract

Music genre classification based on spectrogram images is an important task in music information retrieval. This study compares the performance of a custom Convolutional Neural Network (CNN) architecture and VGG-16 for classifying five music genres from the GTZAN dataset: blues, classical, hiphop, metal, and reggae. A total of 500 audio files were converted into spectrogram images for training and testing. The custom CNN was designed and trained from scratch, while VGG-16 utilized pretrained weights with fine-tuning applied to the fully connected layers. Experimental results show that the custom CNN achieved 75% test accuracy and a macro F1- score of 0.74, outperforming VGG-16 which achieved 68.75% accuracy and a macro F1-score of 0.67. These findings demonstrate the advantage of using a tailored architecture for spectrogram- based music genre classification and provide directions for future research, including full fine- tuning of pretrained models, hybrid architectures, and integration of temporal features.

Copyrights © 2025






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT Engineering

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) adalah jurnal yang berfokus pada teori, praktik, dan metodologi semua aspek teknologi di bidang ilmu komputer, informatika dan teknik, serta ide-ide produktif dan inovatif terkait teknologi baru dan teknologi informasi. Jurnal ini memuat ...