Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol. 4 No. 1 (2025): JNATIA Vol. 4, No. 1, November 2025

Analisis Perbandingan K-Means++, Mini Batch K-Means, dan Fuzzy C-Means pada Segmentasi Pelanggan

I Putu Satria Dharma Wibawa (Universitas Udayana)
Made Agung Raharja (Universitas Udayana)



Article Info

Publish Date
01 Nov 2025

Abstract

Customer segmentation is a crucial process for optimizing marketing strategies This study aims to implement and compare three clustering algorithms on customer transaction data using RFMT (Recency, Frequency, Monetary, and Tenure) features. The dataset, obtained from the UCI Machine Learning Repository, underwent several preprocessing stages, including data cleaning, feature extraction, outlier handling, and normalization. Optimal cluster numbers were determined using the elbow method and validated using silhouette score and davies-bouldin index. The results show that mini batch k-means outperforms the other algorithms with the highest silhouette score of 0.4011 and the lowest davies-bouldin index of 0.9521. K-means++ demonstrated better computation time but slightly lower clustering quality, while fuzzy c-means produced less distinct segmentation

Copyrights © 2025






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT Engineering

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) adalah jurnal yang berfokus pada teori, praktik, dan metodologi semua aspek teknologi di bidang ilmu komputer, informatika dan teknik, serta ide-ide produktif dan inovatif terkait teknologi baru dan teknologi informasi. Jurnal ini memuat ...